Title: | Path Component Fit Indices for Latent Structural Equation Models |
---|---|
Description: | Functions for computing fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) <doi:10.1177/1094428110391472> and demonstrated by O'Boyle and Williams (2011) <doi:10.1037/a0020539> and Williams, O'Boyle, & Yu (2020) <doi:10.1177/1094428117736137>. Also included are fit indices described by Hancock and Mueller (2011) <doi:10.1177/0013164410384856>. |
Authors: | Steven Andrew Culpepper [aut, cre] , Larry Williams [aut] |
Maintainer: | Steven Andrew Culpepper <[email protected]> |
License: | GPL-3 |
Version: | 1.0.5 |
Built: | 2024-11-18 06:24:48 UTC |
Source: | https://github.com/cran/pathmodelfit |
Functions for computing fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) <doi:10.1177/1094428110391472> and demonstrated by O'Boyle and Williams (2011) <doi:10.1037/a0020539> and Williams, O'Boyle, & Yu (2020) <doi:10.1177/1094428117736137>. Also included are fit indices described by Hancock and Mueller (2011) <doi:10.1177/0013164410384856>.
Maintainer: Steven Andrew Culpepper [email protected] (ORCID)
Authors:
Larry Williams [email protected]
Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71(2), 306-324.
McNeish, D., & Hancock, G. R. (2018). The effect of measurement quality on targeted structural model fit indices: A comment on Lance, Beck, Fan, and Carter (2016). Psychological Methods, 23(1), 184–190. https://doi.org/10.1037/met0000157
O'Boyle, E. H., Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs. theory in organizational research using latent variables. Journal of Applied Psychology, 96(1), 1–12. https://doi.org/10.1037/a0020539
Williams, L. J., & O’Boyle, E. H. (2011). The myth of global fit indices and alternatives for assessing latent variable relations. Organizational Research Methods, 14, 350-369.
Williams, L. J., O’Boyle, E. H., & Yu, J. (2020). Condition 9 and 10 tests of model confirmation: A review of James, Mulaik, and Brett (1982) and contemporary alternatives. Organizational Research Methods, 23, 1, 6-29.
library(lavaan) model4 <- ' Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3 Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3 Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3 Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3 Jobsat ~ Ldrrew + Jobcom Orgcom ~ Jobsat' data(mediationVC) fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232) pathmodelfit(fit)
library(lavaan) model4 <- ' Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3 Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3 Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3 Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3 Jobsat ~ Ldrrew + Jobcom Orgcom ~ Jobsat' data(mediationVC) fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232) pathmodelfit(fit)
This data set is from Williams and Anderson (1994) on the study of methods effects in organizational research using latent-variable models.
mediationVC
mediationVC
A variance-covariance matrix
for 232 observations and 12 variables. The variables are indicators of four constructss: 1) job satisfaction (Jobsat; 10 items), 2) organizational committment (Orgcom; 8 items), 3) leader-contingent reward behavior (Ldrrew; 10 items), and 4) job complexity (Jobcom; 6 items). The individual item responses were used to create three, total-score indicators for each construct defined as follows:
JobsatI1
Job satisfaction indicator 1
JobsatI2
Job satisfaction indicator 2
JobsatI3
Job satisfaction indicator 3
OrgcomI1
Organizational committment indicator 1
OrgcomI2
Organizational committment indicator 2
OrgcomI3
Organizational committment indicator 3
LdrrewI1
Leader-contingent reward behavior indicator 1
LdrrewI2
Leader-contingent reward behavior indicator 2
LdrrewI3
Leader-contingent reward behavior indicator 3
JobcomI1
Job complexity indicator 1
JobcomI2
Job complexity indicator 2
JobcomI3
Job complexity indicator 3
Steven Culpepper and Larry Williams
Williams, L. J. & Anderson, S. E. (1994). An alternative approach to method effects by using latent-variable models: Applications in organizational behavior research. Journal of Applied Psychology, 79, 323-331.
pathmodelfit
computes fit indices for evaluating the path component of latent variable structural equation models. Available fit indices include RMSEA-P and NSCI-P originally presented and evaluated by Williams and O'Boyle (2011) and demonstrated by O'Boyle and Williams (2011) and Williams, O'Boyle, & Yu, (2019). Also included are fit indices described by Hancock and Mueller (2011).
pathmodelfit(lavaanoutput)
pathmodelfit(lavaanoutput)
lavaanoutput |
A |
A vector with RMSEA-P, a p-value for the chi-square test comparing the theoretical and saturated model, a 90 percent confidence interval for RMSEA-P, NSCI-P, and SRMRs, RMSEAs, TLIs, and CFIs.
Hancock, G. R., & Mueller, R. O. (2011). The reliability paradox in assessing structural relations within covariance structure models. Educational and Psychological Measurement, 71(2), 306-324.
McNeish, D., & Hancock, G. R. (2018). The effect of measurement quality on targeted structural model fit indices: A comment on Lance, Beck, Fan, and Carter (2016). Psychological Methods, 23(1), 184–190. https://doi.org/10.1037/met0000157
O'Boyle, E. H., Jr., & Williams, L. J. (2011). Decomposing model fit: Measurement vs. theory in organizational research using latent variables. Journal of Applied Psychology, 96(1), 1–12. https://doi.org/10.1037/a0020539
Williams, L. J., & O’Boyle, E. H. (2011). The myth of global fit indices and alternatives for assessing latent variable relations. Organizational Research Methods, 14, 350-369.
Williams, L. J., O’Boyle, E. H., & Yu, J. (2020). Condition 9 and 10 tests of model confirmation: A review of James, Mulaik, and Brett (1982) and contemporary alternatives. Organizational Research Methods, 23, 1, 6-29.
library(lavaan) model4 <- ' Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3 Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3 Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3 Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3 Jobsat ~ Ldrrew + Jobcom Orgcom ~ Jobsat' data(mediationVC) fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232) pathmodelfit(fit)
library(lavaan) model4 <- ' Ldrrew =~ LdrrewI1 + LdrrewI2 + LdrrewI3 Jobcom =~ JobcomI1 + JobcomI2 + JobcomI3 Jobsat =~ JobsatI1 + JobsatI2 + JobsatI3 Orgcom =~ OrgcomI1 + OrgcomI2 + OrgcomI3 Jobsat ~ Ldrrew + Jobcom Orgcom ~ Jobsat' data(mediationVC) fit <- sem(model4, sample.cov = mediationVC, sample.nobs = 232) pathmodelfit(fit)